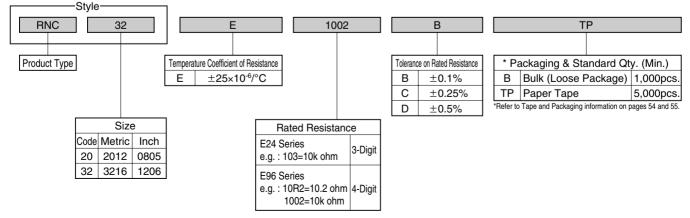

# FIXED THIN FILM CHIP RESISTORS; RECTANGULAR TYPE RNC

### Features

- 1. Suitable for high precision, higher stability and reliability applications compared to thick-film chip resistors.
- 2. Contribute to the reduction of fine adjustment, high accuracy and stability of circuit.
- 3. Please contact KAMAYA for Halogen and Antimony free product of RNC series.
- 4. Stability Class : 1%



### Dimensions




Rated resistance value is maked with 3-digit (E24) or 4-digit (E96) on the over coating.

| Style | Metric | Inch | L        | W                              | Н       | С         | d             | Unit : mn<br>*Unit weight/pc. |
|-------|--------|------|----------|--------------------------------|---------|-----------|---------------|-------------------------------|
| RNC20 | 2012   | 0805 | 2.0±0.15 | 1.25 <sup>+0.10</sup><br>-0.05 | 0.6±0.1 | 0.4 ±0.2  | 0.3 +0.2 -0.1 | 5mg                           |
| RNC32 | 3216   | 1206 | 3.1±0.1  | 1.55 +0.10 -0.05               | 0.6±0.1 | 0.45±0.20 | 0.3 +0.2 -0.1 | 9mg                           |
|       |        |      |          |                                |         |           |               | *Values for referen           |

## Part Number Description

Example



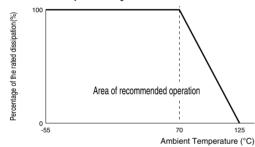
# FIXED THIN FILM CHIP RESISTORS; RECTANGULAR TYPE

**RNC** 

### Ratings

| Style                | Size<br>Metric<br>(Inch) | Rated Dissipation<br>at 70°C<br>W | Rated Resistance<br>Range | Tolerance on<br>Rated Resistance | Temperature Coefficient<br>of Resistance<br>10 <sup>°/°</sup> C | Limiting Element<br>Voltage<br>V | Preferred Number<br>Series for<br>Resistors | Isolation<br>Voltage<br>V | Category Temperature<br>Range<br>°C |
|----------------------|--------------------------|-----------------------------------|---------------------------|----------------------------------|-----------------------------------------------------------------|----------------------------------|---------------------------------------------|---------------------------|-------------------------------------|
|                      |                          |                                   | 100Ω~130kΩ                | B (±0.1%)                        |                                                                 |                                  |                                             |                           |                                     |
| RNC20 2012<br>(0805) | 0.1                      | 10Ω~130kΩ                         | C (±0.25%)<br>D (±0.5%)   | ±25                              | 75                                                              | E96<br>E24                       | 100                                         | -55~+125                  |                                     |
| RNC32 3216<br>(1206) | 0010                     | 100Ω~180kΩ                        | B (±0.1%)                 | 125                              |                                                                 |                                  |                                             |                           |                                     |
|                      |                          | 0 125                             | 10Ω~180kΩ                 | C (±0.25%)<br>D (±0.5%)          |                                                                 | 150                              |                                             |                           |                                     |

Note1. Rated Voltage =  $\sqrt{(Rated Dissipation) \times (Rated Resistance)}$ . (d.c. or a.c. r.m.s. Voltage)


Note2. Limiting Element Voltage can only be applied to resistors when the resistance value

is equal to or higher than the critical resistance value.

Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

# Derating Curve

The derated values of dissipation for temperatures in excess of 70°C shall be indicated by the following Curve.



### Climatic Category

55/125/56 Lower Category Temperature -55°C Upper Category Temperature +125°C Duration of the Damp heat, Steady-State Test 56 days

### ●Performance Characteristics JIS C 5201-1 : 1998

| Description                                    | Requirements                                                                  | Test Methods                                                                                                                                        |
|------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage proof                                  | No breakdown or flashover<br>R≥1G ohm                                         | Clause 4.7 100Va.c.,60s                                                                                                                             |
| Variation of resistance with temperature       | See Ratings Table                                                             | Clause 4.8 Measuring temperature : +20°C/+125°C/+20°C                                                                                               |
| Overload                                       | ∆R≤±(0.25%+0.05 ohm)<br>No visible damage, legible marking                    | Clause 4.13 The applied voltage shall be 2.5 times of the rated voltage or twice of the limiting element voltage, whichever is the less severe, 2s. |
| Solderability                                  | In accordance with Clause 4.17.4.5                                            | Clause 4.17 235°C, 2s                                                                                                                               |
| Resistance to soldering heat                   | ΔR≤±(0.25%+0.05 ohm)                                                          | Clause 4.18 After immersion into the flux, the immersion into solder shall be carried out in Solder bath at 260°C for 5s.                           |
| Rapid change of temperature                    | $\Delta$ R≤±(0.25%+0.05 ohm) No visible damage                                | Clause 4.19 5 cycles between -55°C and +125°C.                                                                                                      |
| Climatic sequence                              | ΔR≤±(1%+0.05 ohm)<br>No visible damage                                        | Clause 4.23 Dry/Damp heat(12+12h cycle), first cycle./<br>Cold/Damp heat(12+12h cycle), remaining<br>cycle./ D.C.Load.                              |
| Damp test, steady state                        | ∆R≤±(1%+0.05 ohm)<br>No visible damage, legible marking                       | Clause 4.24 40°C, 95%R.H., 56 days, test a) and b)<br>of Clause 4.24.2.1                                                                            |
| Endurance at 70°C                              | $\Delta R \leq \pm (1\%+0.05 \text{ ohm})$ No visible damage, legible marking | Clause 4.25.1 Rated voltage, 1.5h"ON", 0.5h"OFF", 70°C, 1,000h.                                                                                     |
| Endurance at the upper<br>category temperature | ∆R≤±(1%+0.05 ohm) No visible damage                                           | Clause 4.25.3 125°C, no-load, 1,000h.                                                                                                               |
| Adhesion                                       | No visible damage                                                             | Clause 4.32 5N, 10s                                                                                                                                 |
| Bend strength of the face plating              | ∆R≤±(0.25%+0.05 ohm)                                                          | Clause 4.33 Amount of bend : 3 mm                                                                                                                   |